Skin rejuvenating effects of interleukin-1 alpha: A cosmetic study on collagen deposition and elasticity in ageing skin

Peter Schoch, PhD (Zürich), Igor Pomytkin, PhD (Moscow)

ABSTRACT
Objective: The aim of this study was to test the efficacy of interleukin-1 alpha (IL-1α) on skin renewal, in volunteers with signs of skin ageing. Method: A placebo-controlled and randomized clinical study on skin renewal was conducted in 21 healthy female volunteers (51 ± 6 years) by administering a cosmetic formulation containing IL-1α twice daily upon either the right or left forearm for eight weeks. Results: Ultrasonograms of all 21 volunteers at baseline and after 28 and 56 days of treatment with a cosmetic formulation containing IL-1α showed improved skin density and the partial disappearance of SLEB in all volunteers. The verum formulation containing IL-1α increased elasticity by 20.7% and 15.2% after 28 and 56 days, respectively. Verum-treated skin showed less viscoelasticity than placebo-treated skin. Conclusion: The results show experimental evidence for a structural (density) and functional (elasticity) improvement of skin by topical administration of a cosmetic formulation containing IL-1α.

METHOD:
Skin density (collagen content) was measured by ultrasonography at 20 MHz using a DermaScan scanner. Bright pixels on ultrasonograms represent high echogenic areas containing lots of protein, e.g., collagen, keratin and elastin. Dark pixels, on the contrary, are low echogenic due to their scarcity of proteins and abundance of proteoglycans, lipids and/or water. A typical marker of skin ageing, in particular of photoageing, is SLEB, the subepidermal elastic layer bridge. Ultrasonography at 20 MHz frequency is a visualisation technique for skin architecture and it is highly and constitutively expressed by keratinocytes in the epidermis. The epidermis, in particular the stratum corneum, is the tissue which contains by far the highest content of IL-1α in the human body. The target cells of epidermal IL-1α are dermal fibroblasts. IL-1α does not only stimulate their proliferation but also activates, in a concentration-dependent manner, the production of procollagen and collagenase, as well as the expression of several growth and differentiation factors for epidermal cells. Only at low concentrations does IL-1α also induce the expression of the tissue inhibitor of metalloprotease (TIMP), a potent inhibitor of collagenase, thus shifting the balance between the production and degradation of collagen towards production. Therefore, only low doses of IL-1α are beneficial for collagen replenishment in skin. Furthermore, keratinocyte-derived IL-1α induces fibroblasts to express growth factors which act back on the epidermis and stimulate its regeneration. The expression of IL-1α by keratinocytes and the production of collagen have been shown to decline in ageing skin. The resulting deficit of IL-1α has been hypothesised to be at least partially responsible for the signs of skin ageing. The study detailed below shows that topical administration of a cosmetic formulation containing IL-1α on ageing skin improves structure and function of ageing skin by increasing its density (collagen deposition) and improving its elasticity.

RESULTS:
Ultrasonography at 20 MHz frequency
Ultrasonography is a visualisation technique for skin architecture. Light pixels indicate high echogenic areas containing lots of protein, e.g., collagen, keratin and elastin. Dark pixels, on the contrary, are low echogenic due to their scarcity of proteins and abundance of proteoglycans, lipids and/or water. A typical marker of skin ageing, in particular of photoageing, is SLEB, the subepidermal low echogenic band.

Figure 1. Schematic representation of the cutometric measurement of ‘gross skin elasticity’ (parameter R2). ‘Extension’ is the deformation of skin upon applying suction. Upon release of suction the skin relaxes and eventually returns to the original shape by multiple processes at different velocities. The suction and relaxation phases lasted 1 s each. Uf is the extension after 1 s of suction, Ua is measured after relaxation for 1 s. Ua represents the elastic component of the relaxation process of skin. The larger R2 = Ua/Uf the higher the skin’s elasticity. Green: aged skin; red: young skin.

Figure 2. Schematic representation of the cutometric measurement of the viscoelastic portion of the skin extension process (parameter R6). The application of suction lasts 1 s. Ue represents the fast elastic component of skin extension that occurs during the first 0.1 s. Uv is the slow viscoelastic portion between 0.1 s and 1 s. R6 = Uv/Ue = [extension at t = 1 s – extension at t = 0.1 s] / extension at t = 0.1 s. Green: aged skin; red: young skin.
Figure 5. Change of gross skin elasticity (R2) after 28- or 56-day treatment with either verum or placebo. R2 indicates the elastic portion of skin relaxation after its mechanical deformation. Only the formulation containing IL-1α improved skin elasticity. The difference between verum and placebo at Day 28 was significant with a p-value of 0.03.

CONCLUSION:
IL-1α is shown to be an innovative active ingredient for cosmetic products with skin rejuvenating (anti-ageing) properties. It acts on the surface of skin by stimulating keratinocytes, the main cells of the epidermis, to produce and release endogenous IL-1α. The physiological function of this cytokine is to stimulate the fibroblasts in the dermis to increase the expression of collagen and elastin which leads to denser and tighter skin, and eventually to an improved skin elasticity and reduced wrinkles (not shown). Topical IL-1α thus affects deep skin structures without penetrating skin by triggering a cascade of
Figure 6. Change of viscoelasticity (R6) of skin after a 28- or 56-day treatment with verum or placebo, respectively. The difference between verum and placebo at Day 28 was significant with a p-value of 0.0008.

This study was conducted by the Skin Test Institute, Neuchâtel, Switzerland, containing IL-1a.

reactions, which propagate from the surface to the depth of skin. In the present paper we show experimental evidence for a structural (density) and functional (elasticity) improvement of skin by topical administration of a cosmetic formulation containing IL-1a.

This study was conducted by Dr Alain Bégueirin.

Dr Igor Pomytkin
created Dermatopoietin
and is the owner
of numerous other
patents. He has a PhD in chemistry and is the current science
director of Buddha Biopharma Oy, Helsinki, Finland. Dr Pomytkin previously worked as a senior research scientist at the Institute of Chemical Physics, Moscow.

Dr Peter Schoch is head of research, development and regulatory affairs at United Cosmeceuticals GmbH. He was previously vice-director for pharmaceutical project development at F. Hoffmann-La Roche, and managing director of the European Society of Clinical Microbiology and Infectious Diseases in Basel, Switzerland.

V-SOFT LIFT is an innovative and less invasive alternative to traditional cosmetic surgery and dermal fillers. V-SOFT LIFT is performed using fine threads that “lift” your skin, increase elasticity and are completely absorbed. The threads are made of polydioxanone (PDO) which is known to be extremely compatible with the natural tissue in our dermis and has been used for over 30 years. An added benefit is that the material, PDO, stimulates the body’s natural production of collagen making your skin healthier and thicker.

Speedy Revitalisation...

V-SOFT LIFT can transform downturned mouth corners, eyebrows, smooth the chin and lift the cheeks. It is a simple, speedy way to revitalize and freshen the face, and results show immediately after the treatment and then continue to improve for about four weeks by which time you will notice the skin and the face looking fresher, fuller and more youthful. Results last for one year or more.

For further information about V-SOFT LIFT please contact:
Medical Aesthetic Group
02380 676733
or visit www.magroup.co.uk

REFERENCES
8. Posthuthwaite A et al. 'Modulation of fibroblast functions by IL-1 Increased steady-state accumulation of type I procollagen mRNAs and stimulation of other functions but not chemotaxis by human recombinant IL-1 alpha and IL-1 beta' J Cell Biol (1988), 106: 311.
11. Wiel-Matti K et al. 'IL-1 increases collagen production and mRNA levels in cultured skin fibroblasts' Biochim Biophys Acta (1991), 1129: 142.
17. Ryu HS et al. 'Influence of age and regional differences on skin elasticity as measured by the Cutometer' Skin Res Technol (2001), 7: 354.